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Abstract

We consider a drift-reversed version of the celebrated Ehrenfest urn process
with N balls. For this ‘dual’ process, the boundaries are assumed to be absorbing
and so the killing times at the boundaries play a central role. Three natural
conditionings on the fixation/extinction events pertaining to this model are
investigated. Some spectral information on the conditioned Markoff chains
is obtained, allowing us to draw precise new conclusions on their limiting
behaviors.

PACS numbers: 05.40.−a, 02.50.Ey, 05.70.Ln

1. Introduction and outline of the results

The Ehrenfest urn model (alias ‘dogs and fleas’) is a famous physical ball-in-box model for
the heat exchange between two bodies (urns) at unequal temperature (the number of balls
labeled 1 to N within each urn); see [7]. It was designed to elucidate some paradoxes raised
by Boltzmann while considering the kinetic theory of gases, among which is irreversibility
versus recurrence of states; see [18] for a review. The relevant state Xn counts the number of
balls within say urn 1 after n steps, one interchanging step consisting in selecting at random
a number within {1, . . . , N}, determining the urn where the ball with this number is and
moving it to the other urn. As is well known, Xn is a standard positive recurrent, 2-periodic
birth-and-death (BD) Markoff chain with state space {0, . . . , N}. This simple model is an
exactly solvable Markoff chain because its spectral representation was completely determined
by Kac and Krawtchouk, among others. For instance, the composition of urn 1 probability at
each time is exactly known; see [8, 10, 13, 15]. The mathematician Mark Kac wrote about
this model that it was: ‘ . . . probably one of the more instructive models in the whole of
Physics . . . ’, [14].
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In this paper, we shall be concerned with a related ball-in-box model which is ‘dual’ to
that of Ehrenfest in the sense that the chain local probabilities of moving up and down are
switched in the bulk of the state space, which amounts to reversing the drift of Xn; see [5],
where this type of duality was coined the ‘Wall duality’, although there it concerns BD chains
evolving on a semi-infinite state space with a reflecting barrier. For our drift-reversed model,
the boundaries ∂ := {0, N} will be assumed to be absorbing. In terms of stochastics, this
problem may be recast as a new BD Markoff chain, say X̂n, still with state space {0, . . . , N}
but which is being absorbed at ∂ . We shall, therefore, let τ̂x := inf(n : X̂n ∈ ∂ given X̂0 = x)

be the first time ∂ is hit when started at x. This model was first considered in [11] from a
purely combinatorial point of view and was called the ‘Mabinogion urn model’ for reasons
explained therein. The physical motivations were to design a simple model of the spread of
influences amongst versatile populations and draw some conclusions about the hitting times
of the boundaries for various initial conditions of interest, together with some limit laws as N
gets large. Again, see [11] for additional physical motivations.

We wish to shed some new light on this dual process by focusing on conditioning X̂n on
the fixation/extinction events at the boundaries. We refer to [2, 12] for similar concerns in
population genetics.

We shall, therefore, investigate the three following conditional problems pertaining to X̂n

and of general interest.

(i) Consider the drift-reversed urn process X̂n, started at X̂0 = x ∈ {1, . . . , N − 1}. Recall
τ̂x is its absolute extinction time at ∂ . Then, conditional on the event (̂τx > n), X̂n

turns out to be a positive recurrent Markov chain on {1, . . . , N − 1} whose Yaglom
invariant (stationary) measure will be shown to be uniform. This measure is also the
quasi-stationary distribution (qsd) of the chain. We refer to [4] for an introduction to
similar concerns in the same framework.

(ii) A more stringent conditioning is also investigated: assuming the chain X̂n given X̂0 = x,

to be conditioned on never getting killed in the distant future, this conditional process is
also a positive recurrent Markov chain on {1, . . . , N − 1} but whose invariant measure
will now be shown to be binomial bin(N − 2, 1/2). Curiously, its probability transition
matrix turns out to be that of a reversible Ehrenfest urn process but with N − 2
balls.
Both results make use of a simple duality result displayed in lemma 1. This property
makes the invariant laws of the conditioned processes explicit which is a rare event in the
context of qsds for finite BD chains; see [4, 17].

(iii) Finally, we shall consider the drift-reversed random walk (RW) X̂n conditioned on exit
through state {N} using an appropriate Doob transform built on the harmonic (or scale)
function of the chain. We shall use this transformation to give some information on
the time it takes for this conditioned RW to undergo a sweep, that is to move from
one endpoint of the state space to the other opposite absorbing state. Our results
constitute a drift-reversed refined version of a result displayed in [1] for the usual Ehrenfest
model.

2. Preliminary information: drift reversal of the Ehrenfest urn model

The Ehrenfest urn model is a BD process on {0, . . . , N}, say Xn, whose up and down local
transition probabilities Xn → Xn ± 1 given Xn = x are given by px = 1 − x/N, x =
0, . . . , N − 1, qx = x/N, x = 1, . . . , N . Its one-step transition matrix, therefore, is of the
Jacobi type (empty entries are 0):
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P = 1

N

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 N

1 0 N − 1
2 0 N − 2

. . .
. . .

. . .

N − 1 0 1
N 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The set of the eigenvalues of P has been known for long to be λk = 1 − 2k
N

, k = 0, . . . , N;
see [13], for example. The Ehrenfest urn process is well known to be positive recurrent and
2-periodic with symmetric binomial bin(N, 1/2) invariant measure.

By drift reversal (Wall duality), let us exchange px and qx within the state-space bulk
{1, . . . , N − 1} and force the states 0 and N to be absorbing. The reversed chain, say X̂n, is a
new BD chain with transition probabilities p̂x = qx, q̂x = px, x = 1, . . . , N − 1. We obtain
the stochastic transition matrix of the Mabinogion urn model with dimensions (N+1)×(N+1):

P̂ = 1

N

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

N 0
N − 1 0 1

N − 2 0 2
. . .

. . .
. . .

1 0 N − 1
0 N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The drift of the RW X̂n is thus

EX̂n=x(X̂n+1 − X̂n) = p̂x − q̂x = −(px − qx) = −EXn=x(Xn+1 − Xn),

but the conditional local fluctuations,

σ 2
X̂n=x

(X̂n+1 − X̂n) = 4p̂x q̂x = 4pxqx = σ 2
Xn=x(Xn+1 − Xn),

are left unchanged.
Let us erase both the first and last lines and columns of P̂ . We obtain the matrix of

reduced size (N − 1) × (N − 1):

P̃ = 1

N

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1
N − 2 0 2

N − 3 0 3
. . .

. . .
. . .

2 0 N − 2
1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Let 1 := (1, 1, . . . , 1)′ be a column vector of 1 s with ′ standing for transposition. The matrix
P̃ is substochastic with

P̃ 1 = 1

N
(1, N,N, . . . , N, 1)′, (1)

therefore it loses mass through the states {1} and {N −1}. Let us now emphasize the following
obvious but remarkable fact:

3
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Lemma 1. With P̃ ′ the transpose of P̃ , it holds that

N

N − 2
P̃ ′ = 1

N − 2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 N − 2
1 0 N − 3

2 0 N − 4
. . .

. . .
. . .

N − 3 0 1
N − 2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

so that N
N−2 P̃ ′ is again an Ehrenfest transition matrix but with N − 2 balls.

From this result, we may draw the following spectral conclusions that will be used in the
following. The spectrum of N

N−2 P̃ ′ is 1 − 2(k − 1)/(N − 2), k = 1, . . . , N − 1. That of P̃ ′,
and therefore of P̃ , are

λk = N − 2

N

(
1 − 2

k − 1

N − 2

)
= 1 − 2k

N
, k = 1, . . . , N − 1.

The spectrum of P̂ is 1 − 2k
N

, k = 1, . . . , N − 1, to which one should add the pair {1, 1}
corresponding to the two absorbing states {0, N}. The dominant eigenvalue of P̂ just after the
double eigenvalue {1} therefore is 1 − 2/N .

3. Drift reversal and quasi-stationary distribution

Let P̂ be the (N + 1) × (N + 1) forward Jacobi transition matrix of the Mabinogion urn
process. For such a discrete Markov chain, say X̂n, started at X̂0 = x, the hitting time τ̂x of
the absorbing boundaries {0, N} is finite with probability 1. We have τ̂x = τ̂x,0 ∧ τ̂x,N , the
infimum of the hitting times of states {0} and {N}, starting from x.

Let P̃ be the (N − 1) × (N − 1) sub-matrix of P̂ obtained by removing the states {0, N}
from the entries of P̂ . It is sub-stochastic at states {1, N − 1} with entries satisfying (1). The
matrix P̃ is easily seen to be the transition matrix of the process X̂n · 1(̂τx > n) (that is X̂n,

restricted to the set τ̂x > n). In other words,

P̃ n(x, y) = Px(X̂n = y; τ̂x > n). (2)

Let ρ < 1 be the spectral radius of P̃ , with from lemma 1 : ρ = 1 − 2/N . The matrix P̃

is irreducible with period 2 whereas P̃ 2 is irreducible and aperiodic, with spectral radius ρ2.
By Perron–Frobenius theorem for primitive non-negative matrices

lim
n↑∞

ρ−2nP̃ 2n = ψμ′, (3)

where μ′ > 0 (ψ > 0) is the left- (right- ) line (column) eigenvector of P̃ associated with
ρ, defined by μ′P̃ = ρμ′ and P̃ψ = ρψ . Let us fix the normalization of the Perron vectors
as follows: we will choose μ so that it constitutes a probability distribution vector so with∑N−1

x=1 μ(x) = 1. We will also choose ψ so that μ′ψ = 1. It results from (2, 3) that

lim
n↑∞

ρ−2n
Px (̂τx > 2n) = ψ(x), (4)

so that τ̂x has geometric tails with exponent ρ: on the set (̂τx > 2n), the Markov chain X̂2n

with values in {1, . . . , N − 1} is called geometrically transient. The latter formula gives the
limiting interpretation of ψ in our context. We also note from (2, 3) that

Pμ(̂τ > 2n) :=
N−1∑
x=1

μ(x)Px (̂τx > 2n) = ρ2n. (5)

4
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If the process is started with μ, the law of the hitting time τ̂ of ∂ is exactly geometric (ρ)

distributed on {2, 4, . . .}.
Consider now the conditional probability Px(X̂2n = y | τ̂x > 2n). One can easily check

from (2)–(4) that, independently of the starting point x,

Px(X̂2n = y | τ̂x > 2n) →
n↑∞

μ(y).

As such, the probability measure μ can be interpreted as a Yaglom limit of X̂n; see [19].
Furthermore, for each n

Pμ(X̂2n = y | τ̂ > n) = μ(y), y ∈ {1, 2, . . . , N − 1},
and μ is the (unique) qsd of X̂n. As is well known for Markov chains with finite state space,
the Yaglom limit coincides with the qsd; see [3, 17] for qsd examples in much more general
contexts.

Applying these general ideas to the Mabinogion urn model, one obtains

Theorem 1.

(i) For the Mabinogion urn model, the Yaglom limit of the process conditioned on not yet
being killed at the current time is the uniform distribution on the set {1, . . . , N − 1}:

μ′ = (1/(N − 1), . . . , 1/(N − 1)). (6)

(ii) With τ̂x = τ̂x,0 ∧ τ̂x,N , for each x ∈ {1, . . . , N − 1}, we have

lim
n↑∞

(1 − 2/N)−2n
Px (̂τx > 2n) = (N − 1) · 2−(N−2)

(
N − 2

x − 1

)
, (7)

and, with μ uniform on {1, . . . , N − 1},
Pμ(̂τ > 2n) = (1 − 2/N)2n. (8)

Proof. In our case study, ρ = 1 − 2/N (the third largest eigenvalue after λ0 = λ1 = 1
for P̂ which is also the dominant eigenvalue of P̃ ) and μ = 1/(N − 1) · 1 can be checked
to satisfy μ′P̃ = (

1 − 2
N

)
μ′, and so the Yaglom limit is the uniform distribution. Finally,

the right eigenvector ψ associated with P̃ and ρ = 1 − 2/N can easily be checked to be
ψ(x) = K · (N−2

x−1

)
, x = 1, . . . , N − 1, for some constant K = (N − 1) · 2−(N−2) consistently

with μ′ψ = 1. �

4. Conditioning on no-exit in the remote future

Consider now the proper Markov chain whose transition probability matrix �̃ is obtained from
P̃ by the Doob transform:

�̃(x, y) = ρ−1 ψ(y)

ψ(x)
P̃ (x, y), x, y ∈ {1, . . . , N − 1},

satisfying �̃1 = 1. In the matrix form, this transformation reads �̃ = ρ−1D−1
ψ P̃Dψ .

The invariant probability distribution π̃ on {1, . . . , N − 1} satisfying π̃ ′�̃ = π̃ ′ exists.
Clearly, it is given explicitly by

π̃(x) = ψ(x)μ(x), x = 1, . . . , N − 1, (9)

where μ and ψ are defined in (3). The Markov chain with the transformed transition probability
matrix �̃ is that of the process whose n-step probability distribution is

lim
n′↑∞

Px(X̂n = y | τ̂x > n′). (10)

5
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It corresponds to X̂n conditioned never to hit the coffin state ∂ in the distant future. This
process has a unique invariant measure given by π̃ in (9). This second conditioning being
more stringent than the previous one, one should intuitively charge more heavily the sample
paths staying away from {0, N}. We, indeed, have

Theorem 2.

(i) For the Mabinogion urn model, the invariant measure of the corresponding process
conditioned on never getting killed in the remote future is binomial bin(N − 2, 1/2),
namely,

π̃(x) = 2−(N−2)

(
N − 2

x − 1

)
, x = 1, . . . , N − 1. (11)

(ii) For the Mabinogion urn model with N balls, the transition matrix of the corresponding
conditioned process is that of the Ehrenfest urn model with N − 2 balls.

Proof.

(i) The limiting qsd μ was shown to be uniform, and the right eigenvector ψ associated with
P̃ and ρ = 1 − 2/N was checked to be ψ(x) = K · (

N−2
x−1

)
, x = 1, . . . , N − 1, where

K = (N − 1) · 2−(N−2). Equation (11) follows from (9). Note that, in contrast to the
uniform Yaglom limit law μ, the probability mass of π̃ is more concentrated on the central
atoms close to N/2, away from {0, N}.

(ii) It follows from �̃ = ρ−1D−1
ψ P̃Dψ and the expressions of ψ,P̃ and ρ. For instance, with

P̃ (x, x + 1) = x/N,

�̃(x, x + 1) = N

N − 2

(
N − 2

x − 1

)−1
x

N

(
N − 2

x

)
= 1 − x

N − 2
,

which is the transition probability, x → x + 1, of the Ehrenfest model with N − 2 balls.

�

5. Conditioning on exit in state {N }
Consider again the reversed BD chain, X̂n with the transition matrix P̂ where both states
{0, N} are absorbing. Define the scale (or harmonic) function ϕ of this BD RW as the function
which makes Mn := ϕ

(
X̂n∧τx,0

)
a martingale. The function ϕ is important because, as is well

known, for all 0 < x < N, with τ̂x = τ̂x,0 ∧ τ̂x,N the first hitting time of {0, N} starting
from x,

Px

(
X̂τ̂x

= N
) = P(̂τx,N < τ̂x,0) = ϕ(x)

ϕ(N)
, (12)

gives a closed-form expression of the probability of exit at {N} before hitting {0}. The searched
harmonic function is ϕ(x) =: 1 +

∑x−1
y=1 ψ(y), where ψ(y) satisfies q̂yψ(y − 1) = p̂yψ(y),

with ψ(1) := 1. Thus ψ(y) = ∏y

z=1
q̂z

p̂z
and so, with x = 1, . . . , N, ϕ(0) := 0:

ϕ(x) = 1 +
x−1∑
y=1

y∏
z=1

q̂z

p̂z

= 1 +
x−1∑
y=1

y∏
z=1

pz

qz

= 1 +
x−1∑
y=1

(
N − 1

y

)
(13)

is a cumulative binomial sequence. Note ϕ(1) = 1. Let us consider the problem of
conditioning X̂n on exiting in state {N}. Let Dϕ := diag(ϕ(0), . . . , ϕ(N)). The transition
matrix Q̂c of this conditioned RW is given in terms of the Doob transform [6]:

Q̂c = D−1
ϕ P̂Dϕ. (14)

6



J. Phys. A: Math. Theor. 42 (2009) 345005 T Huillet

As a result, the exact shape of Q̂c is

Q̂c =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
0 0 ϕ(2)

ϕ(1)
1
N

= 1

0 ϕ(1)

ϕ(2)

(
1 − 2

N

)
0 ϕ(3)

ϕ(2)
2
N

. . .
. . .

. . .
ϕ(N−2)

ϕ(N−1)
1
N

0 ϕ(N)

ϕ(N−1)

(
1 − 1

N

)
0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where it is apparent that state {0} became isolated and disconnected in the transformation
process (Q̂c(0, 0) = 1 and Q̂c(0, 1) = Q̂c(1, 0) = 0). Deleting the line and the row {0}
of Q̂c, we get a stochastic matrix, call it P̂c, of a process say X̂c

n now on the state space
{1, . . . , N} which corresponds to X̂n conditioned to first hit state {N} before state {0}. As
required, if state {0} is to be inaccessible after conditioning, then state {1} of this conditioned
BD process now is purely reflecting (Q̂c(1, 2) = 1), whereas state {N} remains absorbing
(Q̂c(N,N) = 1). Q̂c and P̂ are diagonally similar and so both share the same spectrum,
which is λk = 1 − 2k

N
, k = 1, . . . , N − 1 to which one should add the eigenvalues {1, 1}.

Putting this together, we get

Proposition 1.

(i) The transition matrix of the Mabinogion urn model conditioned on exit at {N} is the
restriction P̂c of Q̂c to {1, . . . , N}, where the scale function ϕ is given by (13).

(ii) The spectrum of P̂c is reduced to {1} ∪ {
1 − 2k

N
, k = 1, . . . , N − 1

}
.

For this conditioned process, it is of importance to evaluate the time τ̂ c
1,N it takes to reach

{N} starting from state {1}, joining the two extreme states of this process. We have

Theorem 3.

(i) The probability generating function of τ̂ c
1,N � N − 1 is

E
(
zτ̂ c

1,N

) =
N−1∏
k=1

(1 − λk)z

1 − λkz
, z ∈ [0, 1], (15)

where −1 < λk = 1 − 2k
N

< +1, k = 1, . . . , N − 1 are the N − 1 distinct eigenvalues of
P̂c, avoiding λ0 = 1.

(ii) In particular,

E
(̂
τ c

1,N

) ∼N↑∞
N

2
log N and σ 2(̂τ c

1,N

) ∼N↑∞

(
N

2

)2

. (16)

(iii)

τ̂ c
1,N

E(̂τ c
1,N )

→
N↑∞

1 in probability. (17)

Proof.

(i) Equation (15) is a particular incarnation of an algebraic result described in [16,
section 1] and [9, theorem 1.2] in the context of BD chains absorbed at {N}. In some
cases, there is a probabilistic proof; see [9, theorem 4.2]. This part makes use of our
findings on the spectrum of P̂c which makes (15) explicit.

7
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(ii) From (i), we have E
(̂
τ c

1,N

) = ∑N−1
k=1

1
1−λk

and

σ 2(̂τ c
1,N

) =
N−1∑
k=1

(1 − λk)
−2 −

N−1∑
k=1

(1 − λk)
−1.

Because the eigenvalues λk are known leading to 1 − λk = 2k
N

, using the integral
approximation

E
(̂
τ c

1,N

) ∼ N

∫ 1

0

1

2

dx

(x + 1/N)
,

we easily get

E
(̂
τ c

1,N

) ∼ N

2
log N and σ 2(̂τ c

1,N

) ∼
(

N

2

)2

,

showing that σ 2(̃τ0,N/E(̃τ0,N )) ∼ (log N)−2 → 0 as N ↑ ∞. (iii) follows from this last
statement. �
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